Page 155 - Demo
P. 155


                                    154 Arrow-Puffin-4_Semester-1 MathsDivision of a Number by 1000%u2022 When a dividend is divided by 1000, the digits in the ones, tens and hundreds places become the remainder.%u2022 The number formed by the remaining digits of the dividend becomes the quotient. Quotient RemainderExamples : 8000 %u00f7 1000 = 8 0 90000 %u00f7 1000 = 90 0 32156 %u00f7 1000 = 32 156 40017 %u00f7 1000 = 40 17Tips for Division%u2022 Know your multiplication tables by heart.%u2022 If the first digit of the dividend is smaller than the divisor, then take the first two digits together to divide.%u2022 If the first two digits of the dividend are smaller than the divisor, then take the first three digits together to divide.%u2022 To check whether the quotient chosen is right, multiply the divisor and the quotient.%u2022 Write the product under the dividend and subtract.%u2022 The difference should be either zero or a number less than the divisor.%u2022 If the difference is more than the divisor, try the next greater number as quotient.I. Find the quotient and the remainder.a. 70 %u00f7 10 b. 89 %u00f7 10 c. 300 %u00f7 10 d. 756 %u00f7 10e. 4000 %u00f7 10 f. 4210 %u00f7 10 g. 3287 %u00f7 10 h. 5000 %u00f7 10II. Find the quotient and the remainder.a. 800 %u00f7 100 b. 735 %u00f7 100 c. 9000 %u00f7 100d. 4285 %u00f7 100 e. 35605 %u00f7 100 f. 12857 %u00f7 100III. Find the quotient and the remainder.a. 6000 %u00f7 1000 b. 3125 %u00f7 1000 c. 13405 %u00f7 1000d. 85608 %u00f7 1000 e. 4217 %u00f7 1000 f. 10000 %u00f7 1000Sometimes, when dividing, there is something left over. It is called the remainder. Let's Practise 4.8 ApplicationLet's Understand Conceptual UnderstandingLet's Understand Conceptual Understanding
                                
   149   150   151   152   153   154   155   156   157   158   159